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I. Introduction

The ion-cyclotron instability has been of considerable interest in the

study of space, as well as laboratory plasmas. 1- 9 Various non-local aspects

due to magnetic shear were discussed by Ganguli, Palmadesso and the present

author.5,6,8, 9- A novel mechanism for the generation of electrostatic ion-

cyclotron like modes was recently proposed by Ganguli, Lee and Palmadesso.
1 0

According to this picture, a non-uniform transverse electric field produces

regions of negative and positive wave energies and a non-local wave packet can

couple these domains, -ith a resultant transfer of energy which allows the

wave mode to grow. The dispersion relation for a sharp boundary electric

field had been developed which brought out the essential physical mechanism

for the instability. To develop a treatment for an electric field with a

smooth profile and determine the ensuing changes in the dispersion relation

was one of the problems to be explored. Going beyond the second order

differential equation formulation was another generalization to be considered.

Also to be considered was the comparison of the above mentioned instability

with the Kelvin-Ilelmholtz instability for the corresponding field profiles.
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II. Accomplishments

A brief summary of the contributions made during the grant period is given

below.

More realistic continuous velocity profiles VE(X,L,a) were considered"'

instead of the previous, piecewise continuous (top-hat) model1 0 . The overall

width of the velocity profile is governed by the parameter L, while the

parameter a provides a continuous transition from the piecewise continuous

profile (a=0), through a sequence of increasingly smoother profiles, to a

Gaussian. Also considered were a trapezoid profile of overall width L and

Steepness parameter a, and a generalized sech 2 (X/a) profile. The Numerov

(shooting code) technique was used to solve numerically the second order

differential equation to find the eigenmodes for the Ion Cyclotron (IC)-like

mode.

Corresponding analysis was also carried outll for the trapezoid and

generalized sech 2 (X/a) profiles to determine the growth rates for the

Kelvin-Helmholtz (KH) instability. An analytical solution can be given for the

trapezoid profile.

The main conclusions were (i) a magnetized plasma with transverse electric

field is unstable to two modes, KH for long wavelengths (kpi<<1) and IC for

kpi)l; (ii) the KH mode is important when ka<1, and dominates for steeper

profiles; (iii) the new mode (IC) has a relatively weak deoendence on 'a' but

depends strongly on L. For smooth profiles (sech 2 (x!a)) the peak of the growth

rate for IC is comparable to the KH growth rate, and the two instability bands

are widely separated in R-space. This mode should thus be observable in

simulations or experiments; (iv) since a sharp profile quickly relaxes to a

smoother profile (increase in a). the IC type mode becomes dominant aftcr t,)
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initial transient dynamics.

These results were presented at the AGU Meeting, December 1986 (Ref. 11,

copy of Abstract is attached.)

We have also considered the generalizations needed to go beyond the second

order differential equation descriptions. Explicit dispersion equations were

obtained for the 4th and 6th order differential equations level of description.

Also, all of these are suocess::e approxinations to a full integral equaticn

treatment. A full kiuietic theory integral equation treatment was provided in

Ref. 12. Formal reduction leads to the differential equation descriptions for

the KH modes for kpi<<l and the IC-like modes for koi)l. (Copy of Ref. 12 is

attached.)
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A kinetic theory in the form ofan integral equation is provided to study the electrostatic
oscillations in a collisionless plasma immersed in a uniform magnetic field and a nonuniform
transverse electric field. In the low temperature limit (kypi < 1, where k, is the wave vector in
they direction and p, is the ion gyroradius) the dispersion differential equation is recovered for
the transverse Kelvin-Helmholtz modes for arbitrary values of k,,, where k,, is the component
of the wave vector in the direction of the external magnetic field assumed in the z direction.
For higher temperatures (kp, > I ) the ion-cyclotron-like modes described earlier in the
literature by Ganguli, Lee, and Palmadesso [Phys. Fluids 28, 761 (1985) 1 are recovered. In
this article the integral equation is reduced to a second-order differential equation and a study
is made of the kinetic Kelvin-Helmholtz and the ion-cyclotron-like modes that constitute the
two branches of oscillation in a magnetized plasma including a transverse inhomogeneous ac
electric field.

I. INTRODUCTION II. THEORY

Shear in the flow velocity of a fluid leads to the low The equation of motion of a charged particle in a uni-
frequency and long wavelength Kelvin-Helmholtz (K-) form maznetic field in the z direction and a nonunform elec-
instability.' The velocity shear can be generated in a number tric field in the x direction is given by
of ways. In a plasma the existence of an inhomogeneous elec- d"
tric field component transverse to the ambient uniform mag- dr rn eE(x).i + flyx;, (1)
netic field can provide a transverse velocity shear. The evolu-

tion of the KH instability in this configuration has been where 0 = eBlmc is the gyrofrequency, and e, m, and Bo
-" extensively studied.2  are the charge, mass, and the ambient uniform magnetic

Recently some space observations3 and laboratory ex- field, respectively. The constants of the motion are (i)

periments " seem to indicate that ion-cyclotron-like waves H (u' + v +v )/2 +e4(x)/m, the total energy, where
are observed for subcritical field aligned currents and there- E(x) = - (x)/x; and (ii) Xg = x + v/fl, which is

fore the origin of these waves is somewhat mysterious. A obtained by integrating the y component of (1). Using

crucial feature of these observations and experiments was v, = fl(.Yg - x) in the expression for Hweobtain the Ham-

the presence of a transverse component of a zeroth-order iltonian for an equivalent one-dimensional problem:
electric field. In order to study the role of the transverse H -,/2 + f1(X -x)'/2 - (e/n)\tS(x). (2)

electric fields in the generation of the ion-cyclotron-like Minimizingtheootentialof(2) weobtaintheguidingcenter
waves 3 4 we suggested a mechanism based on the coupling of position
the negative energy ion Bernstein modes (or the ion-cyclo-
tron modes) in the region where the dc electric field is local- = x + [ v, - VE (!) ]/fl, (3)

ized, with the positive energy ion Bernstein modes (or the another constant of the motion that is an implicit function of
cyclotron modes) in the region where the dc electric field is Xg and therefore is not an independent constant of motion.
absent.5 This is similar to the negative energy wave growth in Here V, (.) = - cE()IB,.
an inhomogeneous mirror geometry. ' In our initial theory In order to recover the fluid K1 modes as the fluid limit
we idealized a typical electric field profile by a piecewise of the kinetic formalism, we will need to construct an equi-
continuous function for simplicity. The gradients of the elec- librium distribution function using the constants of motion,
tric field were ignored to avoid the KH modes for which the such that the equilibrium density is uniform or nearly so.
second derivative of the electric field is necessary. Here we However, we would also like to be able to study the more
use kinetic theory to obtain the general dispersion relation general case ofan equilibrium with an arbitrary density pro-
rigorously, for the electrostatic oscillations in a plasma, in file. Therefore, we will choose the distribution function to be
the form ofan integral equation for an arbitrary electric pro- of the form fo( ,HI) = no( )F,( ,H), such that
file. In various limits we reduce the integral equation to sec- fF d'vz=const. Then we obtain an appropriate!f for the
ond-order differential equations to obtain the eigenvalues. study of the classical KH mode by setting no( ) = const,
The integral equation will bc solved in a subsequent paper. and an appropriate f) for the general case by relaxing this

condition. Such a distribution function, which leads to an

Permanent address Unkersity of Ntaryland, College Park, Maryland equilibrium density uniform to O(E) for a constant n, where
2)742 e( c p,//L) is the smallness parameter, p, ( = v,,,/1), ) is the
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ion gyroradius, and L is the characteristic length associated '_I 9f
wvith the external electric field, can be found by a systematic V, q4) - 7()f'l d

procedure and is given by V ( )p2  C,pfl

f(,)= Nexp( - flhr)g( ), (4) VE (0 +,7 ± . (10)

where N =n,(,6 /217-) 112, 1 I/v,, v, is the thermal velocity, 7

and Here, c., =p/L, and L. = {[dno( )/dj1/n,,(1)}-' is the

g([ ) =exp{J3 [e'P( ')/m + VI )/}n)", scale length associated with the equilibrium density profile.
E In order to evaluate the time integral in (8) we need the

wher '~~) I V'~~')fl.ThequanityparmetzeS orbits. The x component of (1) gives the net force in this
the magnitude of the velocity shear. Note that there are two direction. Since v. is oscillatory in equilibrium, (b.) =0.
crucial parameters in this problem: (i) -q and (ii) c. We wizll This leads to the expression for an average equilibrium drift
allow 7 to bearbitrary but positive while assumingc< 1. The (v,) = (Vz(x)) in the y direction. Now expanding VE
equilibrium distribution can be expressed as around we obtain

f0(WIH) = Nexp[ - (fll2)w']

X e- (11) ,2()V V 2f2n(

where we have expanded the x dependence of (4) around ~- -V ...

and neglected terms of O(e 3) and higher. Here, w2, is Transforming the equationof motion (I) into a frame mov-
*ing with .(v,) in the y direction (i e. v, -u,= v, (v))

V.2 + 17)u 2 + [V;()1
2

] (u,(uyl) - u,/3), and to the spatial coordinate (ite. x-.) we obtain the

- ~ ~~C6) transformed equations of motion,

shorul be note t A he simplifi e othoest aterig pro 41f~. .=1 i,,+ V()21 (2

vided in Eq. 5, has a pathological beh avior wbhiu becomes, X,-lv ':it!~-~(2

very lag.In our calculations we use the tran'sfr4 -co ) .; O
ordinates w, ind 4) (sec Appe'ndix B) so thaithi siinplificd.weew haf i elce tjni of 0(e) an(iheshs
zeroth-order state as given in (5) ag'reswith thi~ exiaCt qain edt sepeii ).
rothmorder state as givenr in (4) twoord'er E2b.u"which~d'bes RIX V wsin4 -(b (CW671 3/)sin 24 1.;. t, 70 (1n' 3a),
not have thii p atholoi&AI i;6j;Prty.-.- '

Integrating (5) over all velocities w~e cani show that the /' 4-t .

equilibrium density distribution, n - 01 l+ o(c2)] suni- and .'n u . 7 1

form to order e. It is possible to devise a distribution function
with density uniform to any desired higher order in -, but X - x - (w, /.hF7 [cos(F7bflr + (P) cos 41
this is not necessary here. For generality, in the following we + (OW/ I 277'fl) {cos [ 2 (4) + V_7f17l)] - cos 24)1,
shall consider a nonuniform equilibrium density profile, i.e., (14a)

no~ ~ ~ ~ = n, ) Y=(,7fsin(4) +1,J0fl0 -sin 41]
Now using the definitions

0r',t') = exp( i(t' - ky')] Wx), (7a) - - ( 1 24'2,71f) {sin2( + ifl ) I-sin 2(P)

OW kx x~k''O k(b '- z v,r, (14c)
where 0 is the electrostatic potential for the perturbed elec. where
tric field and linearizing the Vlasov equation, we obtain the
perturbed distribution function v2 +: V ( 2 2 + Vj Y)(~u - Y/)f

2

and
fA(X,vY) 1 f~fdk'exp[i(k'x)]OA(k,) Vq , /l2

t~ ) Also IP = ,4j~ft + 4, whereT4 is the velocity space angle at
+ ifdk (k ~)(w - k, V )J dt' A I = 0., The oscillatory terms of the order ii. in the orbits are

not important except in the derivation of the Jacobian of
(8) transformation from the integration variables (x,v.,v, ) to

where r = r - r, ( ,w1 ,A)), which will be necessary in the following. For sin-

A (I , 'V'Z plicity, therefore, we shall ignore the oscillatory terms of
expf[ k'x'+ ky(y'- y + , (z - ) or]O(dj) everywhere except in the derivation of the Jacobian.

- ex~if~x'+ k(y'-A +k 1(''-) .LflI1, This restriction can easily be relaxed.
(9) Using (13) and (14) in (8) we obtain

824 Phys. Fluids, Vol. 31, No. 4, April 1988 Ganguli, Lee, and Palmadesso 824



fA(x,v) = -0 iX-fo(,H f dk' exp(ik x)O,(k)

- f dk;' 0,(k D; J '.(')( -kV,)exp{i[n'(4 -a') +k,- (kyw./7yf)sin' (] } (15)

(w -(7f7n'fl - k) (v,) - k, v.)

where

'=kw,1/f, k =k 117+ k= 2 , a'=tan -(k'vr .kY), =x+u/fL,

and J, are Bessel functions. The projection of (15) in k. is

) -ie dk.k(k.)f dxfo.f v =-2r-m f

X (exp[ -i(kx -k )x]- J,(o,')J,.(ur)(w -ky V)

W. o - FVn'fl - k, (vY) k:.v

Xexp{i[(k - k.) + (n' - n) -D + na - n'a']}) (16)
F

The perturbed density is then obtained by integrating the We shall first obtain the differential equation for the fluid
perturbed distribution function over all velocities KH modes as the fluid limit of (19).

= f dv dv dv, f dx fdk .,k . )Jo A. Low temperature but arbitrary shear
Consider k, = 0 and e. = 0. For a quasineutral plasma

X {exp[i(k , -k,)x] - exp[i(k" - k,)l ]F), the condition that the net perturbed density (19) vanishes

(17) provides the electrostatic dispersion relation. Further, since

where k, = 0 the electron contribution to the net perturbed density
is ignorable so that the ion perturbed density set equal to zero

F= (o - k, V') .(o)h ( leads to the desired general dispersion relation. We shall now
.' o - n'JFjf) - k(v kv, proceed to specialize the general dispersion relation for low

X exp [ i(n'- n)(b+ina-in'a'. (18) temperature (kyp, -0). Upon 4) integration the term pro-
portional tocos 4)in Gvanishesand n' becomes n in (18).

Equation (17) is the most general form for the perturbed Since low temperatures are of interest we keep n = 0, + I
density for either ions or electrons. In the quasineutral limit terms in F. Higher harmonics are associated with higher or-
the most general dispersion relation for the electrostatic ders in temperature. The argument of the Bessel functions
waves, in the form of an integral equation, is given by can be written as or= (w,/v,)(kL)e and, assuming that

, .f exp(ikx)n dk, = 0, wherea represents the species. the factors (k, L) and (w I/v , ) are less than or of order uni-
Now we transform the integration variables in (17) ty, we can expand the Bessel functions to O(c2) so that

from (x,v,,v,) to ( ,w,4) using the appropriate Jacobian,

which in this case is (see Appendix B) IJ I = - F/-w, ex- -1 IF [I'+ k- F((v= -+)
pand the exponentials in x and S around ; and retain terms Cal
up to 0(W) to obtain k

Netf + 2 2 + 2 -£I 1
k= J _ d J dv , dtv,  d,t2, -

xf dk b,(k )exp[ fl( + )/2] 4Y 1n2 (0, - 7

Xexp[i(k: -k,) IG, (19) + 2 -ik (a,-0 (k k . (21)

where It is important to note that under these conditions the terms
of order unity in ( I - F) drop out. Therefore, the term pro-
portional to (v,) - VC = VZ( /2 2 +p,)12; 2 _O( E-2

G= I F I-which is responsible for the KH instability, along with the
41" fother terms of the same order, are the leading terms of ( 19).

wT cos D This will lead to the dispersion differential equation (22),
- k, f describing the KII modes. flo%ever, when u-O( I), the

V2 Cs 2Bessel functions can no longer be expanded and consequent-

- (k" - k,) I 1 (20) ly the role of the 0(62) terms, and in particular the I " term,
2rDf)- will diminish in importance. lhis situation, which corre-

825 Phys Fluids, Vol. 31, No 4, April 1988 Ganguli, Lee, and Palmadesso 825



sponds to cases in %%hich k p, >0( 1) (e mav still be small), the dispersion equation for the KIt modes for warm plas-
may lead to a significant change in the character of the mode, mas. They incorporated the tcmperature cffects through the
and possibly to finite gyroraCius stabilization of the KH in- pressure tensor and arrived at Eq. (16) of Ref. 7 as the dis-
stability, persion differential equation. If the temperature related

In order to obtain the dispersion differential equation terms (which are included in the factor R in their paper) are
for the KH modes we need to obtain n,(x) = fn," set equal io zero in Eq. (16) oftheir paper,'then it reduces to
Xexp(ikx)dk, for the ions and set it equal to zero. After our Eq. (22). At this stage, by defining a transformation
carrying out the w, integration, p, can be factored out and U = (wao# - kj, 10)/D, where D = 71- (o/fl)2, it can be
the resulting equation becomes temperature independent in shown that all the r related terms can be transformed away
thep, - 0 limit. The k, integration provides a delta function, and (22) can be expressed in the form of (34), which repre-
2rn'(x - '), which makes the " integration trivial and con- sents the classical KH mode except that O(x) is replaced by
verts the 4 dependence into x dependence. Thus, performing U. Thus, although the eigenfunctions are affected, the eigen-
the 4 integration after using f dk 0 (k . )exp(ik .') values of the classical KH modes remain unaffected by the
= 0('), we obtain the second-order differential equation magnitude of the velocity shear in the zero temperature lin-

for the KH modes in the zero temperature limit: it. This is physically satisfying, since if the gyroradius is zero
d 2 d and in the absence ofan equilibrium x drift, particles cannot

-A(x) --B(x)k sample the x direction and hence cannot experience the ve-
( A x Yk locity shear irrespective of its magnitude. However, for finite

k, V (x) C(x)O(x) =0, (22) temperatures, the magnitude of the velocity shear will play a

co role, as evidenced in the simulation results' and the experi-

where mental results of Jassby.' Unfortunately in the simple model
Ax) =[2kyV.(x), + 7(x)fh]/[o2 

-r(x)f1
2 ], for the temperature assumed in Ref. 7 this cannot be ex-

plained since all the temperature related terms can also be

(23) transformed away.7 For arbitrary shears the temperature

B(x) = I + {2[71(x) - 1 ]f12}/[(O1 - 7(x)f12], (24) correction to the lowest order involves a great many terms
and will be discussed in a subsequent paper. Here we make

C(x) £12! [wo - 7 (x) (P], (25) the weak shear approximation but treat temperature as arbi-

and a1 = w - k, V E (x). Equation (22) is the dispersion dif- trary and find that the finite gyroradius stabilization of the

ferential equation for the fluid KH modes valid for arbitrary KH modes can be understood and predicted by the kinetic

shear strength, i.e., for arbitrary values of V /fl, as long as theory.

77 > 0. Starting from the fluid equations one can also derive
(22). It should be noted, however, that when V becomes
small, the arguments of the Bessel functions become large. B. Weak shear but arbitrary temperature
Thus for 77 -0 the expansion of the Bessel functions for small Now we consider the limit where the shear is not strong
argument may not be a good approximation unless the ion but temperature and k,, are arbitrary. In this limit, since the
temperatures and hence p, also become vanishingly small. x dependence of the equilibrium quantities is weak, we can
Thusif7jisconsideredarbitrary then the fluid theory is valid assume k_ = k ', in (20) so that G = I - F. Also for weak
only when 77 > 0 and the arguments of the Bessel functions shears, 77 - I will be considered. For generality we will also
are sufficiently small, include an equilibrium density profile N(g). The perturbed

Pritchett and Coroniti7 used the fluid theory to obtain density after carrying out the (1 integration becomes

n,,(x) = - dk. exp(ikx) dJ dw, w, dvr dkj ( k;)N,,(4Kexp[i(k -k) ]

X exp - ,+ ,,v!) 1 7 (0)__,+OM,,__ . * •j I 0'
2eP~~L +t)( " (co,-aho~ -n-- -)J k-7o " (26)

2 X _ (01- (.020 - tif , (26

Here a denotes the species and w - kV, = a), + o0,o - wT1, whereco2 , = 'P?,/2andto* = k, ,pj1. In the denomi-
nator we have approximated (o - k,(v) =w 1 - &2, thereby replacing w 2 by its average value 21,'. Now the w, and the v,
integrations can easily be performed to yield

n,.(x) =- dk, exp(ikx) d no( f (k )exp[i(k k,) ]27rm,f- _ f =-

+ + - z0 r.0 *(bl, (27)
'4 ~ ~ 21\. V lk1v,.21,, V I v,,

where r, (b) = I, (b)exp( - b), and .t, are the modified Bessel functions and Z( ) are the plasma dispersion functions. Here

b, =p (k ] + k) We can expand r. in k p] so that r, (b,) - r. (b) + F' (b)k p + ., where F, = dF./db and

826 Phys. Fluids, Vol. 31, No. 4, April 1988 Ganguli, Lee, and Palmadesso 826



b k p,,. Since we have consistently retained terms up to e2, we neglect the terms O(k ) and higher that are of higher
order in E. Using this expansion for F, (bl) in (27) we perform the remaining integrals to obtain

NI + / 0" /
a ~ ~2(a(X) yr(b)

n,, W = j (28)

0, + j *, ) d 0,-nl 7( W,(8
where A a av, ,/4a rn,,e,,, is the Debye length for the 2 k V(x)

2' ~ 2 th Db (x).... k 2p + P p W>0((34
species a. The quasineutrality condition, Iel(n,,-n) dx -( =0. (34)
= 0, leads to the general dispersion differential equation for For higher temperatures (ko, > I ) the Bessel functions
the electrostatic modes in the low shear limit. Retaining only can no longer be expanded and as explained earlier the terms
the n = 0 term for the electrons and considering pp, we of the order e, such as ,, become less important. Neglect-
obtain ing o2 with respect to w and ignoring the density gradient in

(p2.4(x) d- +Q(X 6() 0, (29) (30) and (31) we recover the starting equations for the high-
S-+)er frequency ion-cyclotron-like modes 5

where
..(0 + (02-- ' I1. NUMERICAL RESULTS

A-- 1. fk 1 , (, A. Kinetic Kelvln-Helmholtz modes

'(0 f~ \We now numerically find the eigenvalues of the general
xz o -, 2. F(b), (30) dispersion differential equation (29), which is still in the

• ,(2kj,, weak shear limit, first in the fluid limit to recover the fluid

and results for the electric field profile E(x) = E tanh(x/L).
We then use the parameters of the simulation' to reproduce

Q(X) I+ -. (01 4- (2 - )o those elements of Table I of Pritchett and Coroniti7 that are
21kljv, accessible to the weak shear limit of the theory. The differen-

tial equation (29) is solved numerically by a shooting code
XZ r ,r (b) for the complex eigenvalues o. We assume WKB nature of

F2V1 k ( IV, the solutions for x - c and impose an outgoing energy flux
+ (Ol + (02/rP + (,/r, boundary condition. With Ow,, and 'b specified at the

+ Fki IV, boundaries for an initial eigenvalue oo, we use a variable
stepsize integrator to obtain 0 and 0' at the origin where the

X Z /W 217P_ (31 matching condition is examined. If the matching condition
\_ 1,kIv, (31) is not satisfied a new o is assumed and the process iterates

until the eigenvalue is obtained with the desired accuracy.
Here r -7/T,, ti = rn,/m,, and b = (kp,)2. The sub- To recover the fluid limit we consider E = 0.I, E, = 0,
scripts on o2 and &o*, which are for the ions, are suppressed. a = 1837, "VE = (V'/v,) = 1, u = kllk, = 0.0001, and

In order to recover the dispersion differential equation r = 3.5. For kp, = 0.02, 0.05, and 0.08 we obtain rL /V'-
for the KH modes in the weak shear limit we set t* = 0, 0.1369, 0.1868, and 0.1067. These results coincide with
kil = 0, and retain n = 0, + I in (30) and (31) so that the fluid calculations and are consistent with the normalized

growth rate against the dimensionless wavenumber plot for
/2 2(d +(0 (0 1 -2 the fluid KH instability provided in Fig. 2 of Ref. 7. Thus the

(a) -(0f ((Z - ) 2 fluid results are recovered from the kinetic dispersion rela-
tion for the parameter range that is fluidlike.

(32) We now use - = 1, to match the simulation parameters.
and Also since r = 1, c, = 12v,, where c2 = 2 ( T, + T,)/m,. For

Q(x) 17,[0,) "=2V'/c, =0.764 we find that theeigenvalues of (29)
()I - C 0  fork 7 L =0.393 and = 0.19andO.38 aregivenby ,L /V"

2 2 - = 0.188 and 0.191 while the corresponding eigenvalues for
d (02 2F(b) . (33) V = 1.513 are 0.184 and 0. 189. Comparing these with the

+ 'o2
2 

-IJ corresponding elements of Table I in Pritchett and Coroniti'

Further, if we take the low temperature limit [4,p, , I, and we find that our theory is in agreement with the simulation
thus r-,, - (I - b,). F - b /2, F, -- 1, F; - and the low results. ' Figures I (a) and I (b) are the eigenfunction and the
frequency limit (of/ lf, I ) in (32) and (33) and substitute profile for the external electric field, for e = 0.19 and U-

these in (29), we recover the starting differential equation = 0.764. For moderate shears (<0.5 ) better agreement
for the KI modes widely used in the literature': with the simulation can be expected if the assumption of
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FIG. I Solution of the general dikpersion differential equation (29) in the fluid limit. Here c 0.19, kp, = 0.074,"V, = 0.764,/ 1837, u = 0.0001, and
r = I. (a) The real and imaginary, parts ofa typical cigenfunction. (b) The external electric field profile E(x) = EO tanh(x/L) for e = 0.19.

weak shear, i.e., k ' k,, is relaxed. This will be the subject A two-dimensional particle simulation"° using an ap-
ofa future article. Higher shear values, however, are inacces- propriate initial distribution function to study the ion-cyclo-
sible to the theory at the present simplified differential equa- tron-like modes is currently in progress. Ultimately we shall
tion level. For very high shears a dispersion relation in the compare the KH modes with the ion-cyclotron-like modes'
form of an integral equation as provided in (17) will become through numerical simulation as well as through theory.
necessary. Also, uncertainty in the simulation results is ex- Thus we will usep = 100, which is being used in our simula-
pected for higher shears where r differs significantly from tion."°To study the finite gyroradius stabilization ofthe KH
unity (but is still positive), unless the initial loading is in modes we plot the growth rates normalized by the ion-cyclo-
accordance with the equilibrium distribution given in (4). tron frequency fl, against b, for various values of u in Fig. 3.
When shear is weak and a, =VE (the peak value of We consider r = 3.5, c = 0.43, and a mild density gradient
VI(x)/f!l is small, 71 is close to unity. For low tempera- e, = 0.05 centered around x,, = 1.33 pi such that t,
tures (c-0). the equilibrium distribution function (4) can = -0.05 for x,, -p, <x <x,, +p, and 0 otherwise, and
be reduced to a Maxwellian shifted in they velocity by the as the dc electric field profile we consider E(x)
magnitude ofthe EX B drift, which is approximately VF (x). = Eo sech2(x/L) (see Fig. 4). The growth rates of the K1
Such a distribution function was used by Pritchett and Cor- modes are expected to reduce because of the density gradi-
oniti7 for the initial loadi-g. While acceptable for small a, ent"' but with the mild c, used here this decrease was not
and es.pecially for low temperatures, this method may lead to
significant relaxation of the initial state for large at, thereby
affecting the equilibrium parameters substantially. Thus, for 002 .7 0.0
large a,, the interpretation of the final simulation results7

remains dubious. 0016- 008

We now study a different electric field profile,
E(.x) = E, sech2(x/L). Once again, to check the fluid limit 00 2 02we usec = 0. 1, r-1,t 1837. and u = 0.0001. Figure 2is /

a plot of the growth rates and the real frequency of the KH 0008 . 00

modes as obtained from Eq. (29) (solid lines) against b. The 0,
(lashed lines are the fluid results provided in Drazin and 0004- 002

Howard' in their Table I as sinuous mode. Good agreement
can be expected for e, 1. For larger c, however, the (o2 ap- 0 o
pearing in the denominator of (32) and (33) cannot be b

treated as negligible. For larger e, the denominator to2 can
influence the results by enhancing the growth rates. This FIG. 2. The real and imaginary frequencies normalied by fl, for the KIi

important temperature related effect cannot be predicted by instabilities for the dc electric field profile given by E = E. sech'(x/L) are
plotted as a function of b. The solid lines are the eigensalues of Eq. (29)the fluid theory including temperature, a-, given by Pritchett while the dotted lines are the fluid results given in Ref. 9. Here c = 0. 1,

and Coroniti." r = I, u = 1837, and u = 0.0001.
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significant. From Fig. 3 we see that for a given e the growth
rates peak for a particular b. The peak of the spectrum is
localized for b -0.16 (kp, -0.4 and kL -0.93) and FIG. 5. A schematic representation of the piecewise continuous dc electric

field profile.
maximum for transverse propagation (u = 0.0001). As the
obhqueness u is increased, there is a sharp decrease in the
peak value along with the narrowing of the spectrum. Be- w -w, = w - k, VE, while outside this region where the
yond u = 0.0075 the growth of the K H mode is substantially electric field is nonexistent (region 11) there is no shift in tile
reduced. frequency. This is the essential feature distinguishing the

two regions. The matching condition of the logarithmic de-

B. Ion-cyclotron-like modes rivatives of the solutions of (29) at the boundary x = L /2,

Now we consider the case where kp, > I. As explained provides the nonlocal dispersion relation,

earlier, in this domain we can no longer expand the Bessel - A tan(K,/2e) = ix,', (35)

functions, and consequently the O(t) terms responsible for where Kl = Q(wo)/A (co,) and Kit is identical to K, if (0, is
the KH modes play only a minor role. For the range in which replaced by o. For details we refer to our earlier paper.5 The
we are now interested, "here kp, -3, we can neglect these dispersion relation was solved' for a wide range of param-
terms for convenience, %'o explain the ion-cyclotron-like eters to find growing modes distinct from the KI modes. We
modes we first resort to the piecewise continuous field pro- first give a physical description for the origin of these modes.
file" (see Fig. 5). This is an idealization of the actual field The dispersion relation of the electrostatic ion Bernstein
profile and we use it only to demonstrate the principles in- modes is'
volved and to obtain a good starting eigenvalue for numeri- 22
cally tracking the eigenvalues for a smooth profile. For a D(o) = I - Fo(b) - _2 ,, (b), (36)
piecewise continuous profile it is trivial to derive the nonlo- ,> 0 _

cal dispersion relation. Setting w., and cL) equal to zero in where k1 -- 0 is assumed. The energy density of these modes

(30) and (31), we use (29) as the differential equation for is

the modes in question. In the region over which the electric D 4 F, n' 2 2 2

field is localized (we shall refer to this region as region I) U c 0 o -
, 

(W2 -n2f2)) = W2a (w), or> 0.

there is a Doppler shift in the frequency, i.e., (37)

Clearly, these are positive energy waves. Introduction of uni-
.- -form electric field in the x direction initiates an EXB drift in

they direction and consequently there is a Doppler shift in
o, ,, 1 othe frequency, i.e., co--to, = w - k, V,. The energy density

in the presence of the Doppler shift is U' & wa(a,), which
06- 105

E,, can be negative provided o), <0. Now if we consider the lo-
04, 1 0 calized field configuration as shown in Fig. 5, then it is clear

that because of the EXB drift the energy density in region I
02 095 becomes negative while it remains positive in region II. A

nonlocal wave packet can couple these two regions so that a
..- " . ' 9 flow of energy from region I into region II will enable the

. .- 6 wave to grow. Based on this simple picture we can predict
sonic gross features of the instability. As for example, using

HOG 4 'The equilibriunt field and density configurtion used in the calcul- the wave-kinetic description it is possible to obtain tile ener-
tions of Fig 3 Ifere .e, - 1.33p,. , = -- (105 when x. -p, gy balance condition for the system from which important

" v , t, .and .ro other" e scalings governing the gro\th rate can be predicted. The
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growth of the wa\e in region I iniplies a loss of energy from = I, u = 0.001, p 1837, and the growl h rates hascbeen
that region. 13 conservation of energy, this mut be the re- maximized in b.
stilt ofconsection ofenergy into region II and an\' local ener- We shall now study the ion-cyclution-like modes for
gy dissipation (S - ) or free energy release (S, ) processes in smooth profiles. For this we use an electric field profile given
region I. The rate of growth of the total energy deficit in by
region I is proportional to the growth rate y. the wave energy
density U, in region 1. and the volume ofregion 1, represent- E(x) = Eu/[A sinh 2(x/a) + 1], (39)
ed here by the extent in thex direction (L) of region I times a
unit area A, in the plane perpendicular to x. The rate of whereA = I/sinh 2(xo/a) andxo = L/2. Fora-0 (39) rep-
convection through A, is just VG U,, where V, is the group resents a "top hat" profile that reduces to half of its peak
velocity in the x direction and Un is the wave energy density value at x = x0. As a increases the profile becomes smoother,
in region II. We can then write the energy balance condition and ultimately, when a =x/sinh- ' (1), which makes
as A = 1, expression (39) reduces to E(x) = E. sech 2(x/a).

yU, LA, = (S, - S_ - VU, )A,, (38) The shooting code used for the determination of the eigen-

where S, and S_ represent the source and the sink in region values can operate best when the initial guess for the eigen-

I. The eigenvalues obtained from (35) areexpected to satisfy value is not too far away from the actual one. Thus it be-

the energy condition (38). For the situation presently under comes necessary to use (39) so that in the limit a - 0 we have

consideration we do not have any external source of free excellent guess values obtained analytically from the nonlo-

energy and since kil -0, the natural dampings are absent. cal dispersion relation (35). Starting with the eigenvalue for

Therefore S, = S_ = 0. Now it is clear from (38) that if U, the a - 0 case we slowly increase a to track the eigenvalues
is negative then ycan be positiveand hence the growth ofthe for the profiles with the desired smoothness. For b -8 we

wave is sustained by convection ofenergy into region 11 from have to retain n = 0, ± 1, ± 2, ± 3, ± 4, ± 5, ± 6 harmon-

region I. On the other hand if U, is positive then the convec- ics and the acrociated plasma dispersion functions in (29)

tion of energy out of region I would lead to a negative growth that are evaluated numerically; thus the computations for

rate and therefore to damping of the waves. For S += 0, an each eigenvalue is CPU time intensive.
important scaling can be predicted from (38), i.e., /V, InFigs. 7(a)-7(d) we display the transition of the elec-

a: IlL, which with proper normalizations can be written as tric field profile from nearly piecewise continuous to smooth

Im(k,p, ) E. In Fig. 6 we plot Im(k~p,) against c and con- for four different values of a. Here e = 0.3. In Figs. 8(a)-

firm this scaling. In Fig. 6 other parameters arc VA = 2.9, 8(d) we display the corresponding wave packets. Other pa-
rameters are b = 8,,r = 3.5, u = 0.01 l, = 1837,'VA = 0.6,
x., = 1.66p, and E. = -0.07 if x.,, -0.9p,<x<x,,
+ 0.9p, and zero otherwise. The growth rates did not vary

o.20 much during this transition. For a = 0.1, 0.707, 1.41, and
1.89 the corresponding growth rates normalized by the ion-
cyclotron frequency y/fl, = 0.048, 0.05, 0.037, and 0.031.

0.18 There is only a 40% reduction in the growth rate from the
sharp to smooth profile, and initially in going from a + 0. 1

0.16- to a = 0.707 there is a slight increase in the growth rate. This
is in contrast to the KH instability where the growth rates
are dependent on the second derivative of the electric field

0.14 and are therefore very sensitive to the scale size variation.

In Fig. 9we provide a plot of the growth rate and the real
0.12 frequency of the ion-cyclotron-like modes normalized by the

ion gyrofrequency as a function ofb. Here the profile in (39)
is used with a = 1.87 and the rest of the parameters are iden-

0 10 tical to Fig. 8. We find that the instability is peaked around
k,p, - 3, which for e = 0.3 corresponds to k, L - 10 which is

008 an order of magnitude larger than the corresponding value
of the peak for the KH modes. Further for u = 0.011 used
here, the Kt modes ."re expected to be nonexistent and thus

006 the domain for dominance for the two modes can be quite
distinct. This contradicts the conclusion in Ref. 12 where a

004 simulation based on only one set of parameters obtained
from the idealized field profile' was used to conclude that the
KH mode will always dominate the ion-cyclotron-like

0 0.05 0.10 modes. Further the initial loading in the simulation 2 (as-
sumed to be similar to that of Ref. 7) is improper since a, for

FIG. 6. A plot of lmtk,p,) against E. 1 ihe linear dependence confirms the the parameters used was extremely large (greater than uni-
scaling ,/V. , I/L. Here P. = 2.9, r = t, u = 0.0001, and ! = 1837. ty), and consequently the simulation 2 showed a strong re-
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FIG. 7. The transition from a sharp to a smooth profile gien in Eq. (39). Here 707 0.3 and (a) a 0 1, M a 0.707, (c) a 1.41, and (d) = 1.89.

laxation of the initial nonequilibrium velocity profile. cantly for u>0.0075 and the peak of the spectrum is around
In Fig. 10we use the parameters foroursimulation'" (to b-0.2. Once again the domains of dominance for the KH

be discussed in a separate article), i.e.,/p = 100, r = 3.5, and the ion-cyclotron-like modes are quite distinct.
c = 0.43, u = 0.038, e, = - 0.05 for x,, - p, <x <x,, Finally in Fig. 11 we provide a plot of the real and imagi-
+pi and 0 otherwise and x,o = 1.3 3p, to plot the growth nary parts of the eigenfrequency o normalized by the ion
rate and the real frequency normalized by the ion gyrofre- gyrofrequency fl, as a function of'VE, the peak value of the
quency. Here for completeness we also include the W2 term in equilibrium EX B drift velocity normalized by the ion ther-
(29) to compute the growth rates and use exactly the same mal velocity. Here b = 10, r = 3.5, , = 1837, u = 0.011,
dc electric field and density profiles as were used to produce E = 0.3, x, = 1.66pi, c, = - 0.07 when x., - 0.9,
Fig. 3. The inclusion of the &), term does not change the <x <x,o + 0.9p, and 0 otherwise. For the external electric
eigenvalue by much. The peak of the spectrum is around profile we use (39) with a = 1.87. We see that the real fre-
b- 14. In Fig. 3 we used the same parameters to conclude quency is almost linearly proportional to _P1, which is in
that the gro%%th rate for the KII modes is reduced signifi- keeping ,ith the experimental results of Sato ct al.'
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9
p, andxo = 1.

66p,. (a) a=0.1, (b)a=0.707, (c) a= 1.41,and (d) a= 1.89.

IV. DISCUSSION inhibit the classical KH wave growth while both these effects
favor the ion-cyclotron-like waves.

We have provided a kinetic theory to study the electro- An important feature of the ion-cyclotron-like modes is
static waves that can be excited in a collisionless magnetized the fact that the real frequency of these waves is roughly
warm plasma by a transverse velocity shear. For kp, < I we around k, V'/2 (see Figs. 9 and 11 ). This is similar to the
recover the fluid KH modes and when kp, is increased we KH waves, and therefore the two instabilities cannot be dis-
find that the growth rates for the KH modes are reduced and tinguished by the scaling of the real frequency with k, V,.
for large enough k.p, the KH instability is completely The linear dependence of the real frequency of the ion-
damped. Further, the growth of the KH modes is severely cyclotron-like modes on the dc electric field was not explicit-
affected by the parallel dynamics. It seems that for a colli- ly discussed in our previous paper.' This could have contrib-
sionless plasma the KH modes can grow only for very small uted to a misunderstanding, which led Pritchett 2 to
k1l. As kp, becomes of order unity the expansion of the conclude that since the modes in his simulation for p,/L
Bessel functions is no longer possible. Consequently the = 0.3 and for k,p, = 0.47 and 0.94 displayed the linear de-
terms of O(e2 ) responsible for the KH modes diminish in pendence of the real frequency on the equilibrium flow ve-
importance. At this point the large kp, ion-cyclotron-like locity they could not be the ion-cyclotron-like modes that we
modes dominate. Further, larger k,, and density gradients have discussed. A similar misunderstanding was also dis-
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FIG. 9. A plot of the normalized real and imaginary parts of the eigenfre- FIG. 11. The normalized real and imaginary parts of the eigenfrequency of
quency of the ion-cyclotron-like instability against b. Here f =0.3, the ion-cyclotron-like waves plotted against VE. Here b = 10, r = 3.5,
u =0.011, a= 1.87, r=3.5, V, =0.6. p = 1837, x, = 1.66p,, and E, u = 1837, u =0.011, e=0.3, a = 1.87, and ,= -0.07 if x.- -O.9p,
= - 0.07 if x, - 0.

9p, <x > x,,o + 0.9 p, and zero otherwise. < x < x, + 0.9p, and zero otherwise.

played by Sato eta. 4 in discussing their experimental results.
Since the initial electric field profile used in the simula- profile described in their' Eq. (2). In fact, the initial profile

tion described in Ref. 12 was not in equilibrium, the system is characterized by two scale lengths L and a with a peak
immediately relaxed [see Appendix A, condition (A21); value of about 3v, while the final relaxed profile is more like a
heret 2 a, = (p/a)-VE = (2.4)3 = 7.2 > II to what is shown Gaussian or a sech2(x/L) type characterized by only one
in Fig. 4 of Ref. 12. This is very different from the initial scale length L and with a peak value of around 2v,. Also, as

explained, 2 the spatial extent L of the electric field increased
during the course of the simulation. Conservatively estimat-

... .. 1.6 ing the broadening of L by only 20%, and considering that
the final profile is approximately similar to sech2 (x/L) with

0.03 . 1.5 p/iL = 0.25, then the modes at kypi = 0.47 and 0.94 would
correspond to k L = 1.88 and 3.76, respectively. These val-

-1.4 ues will be larger if the spatial extent is broadened more than

a.4 the 20% assumed. As we have shown through the analysis of
the kinetic KH modes and Drazin and Howard9 through the

0.02- -1.3 analysis of the fluid KH modes for shear profile of the type
t - sech 2 (x/L), the KH modes are strongly damped for k,L > 1

I-1.2 and almost nonexistent beyond k,L-2. Thus the mode at
1.2, kpi = 0.47 can be the tail end of the KH spectrum but the

/ 0,, mode at kp, = 0.94 seems to be completely out of the theo-
0.01/ 1.1 retically predicted KH spectrum and the growth rate in the

second mode is higher. Hence, the conclusion based on theI

1.0 simulations of Ref. 12 that the KH mode will always domi-
I/ nate over the ion-cyclotron-like modes for a configuration

with a localized electric field perpendicular to an external
,______________/

_2__ 30-L 40.0)9 magnetic field is at best dubious. However, we do agree with
3 4 56 8 10 20 30 40 50

b the other conclusion' 2 that the idealized field profile

FIG. 10. A plot sinilar to Fig. 9. Here u =0.038 and the rt ofthe param. (piecewise continuous) used earlier5 to demonstrate the
eters are identical to Fig. 3. physical principles involved is not suitable for simulation
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purposes and that a strong relaxation from such a profile toa justments and that these would be small, as long as a, <I.
smoother profile is likely. The fact that the piecewise contin- Thus as long as a, is small the use of a shifted \lax%%ellian
uous field profile is an idealization was emphasized in our appears to be acceptable, although (45) describes a better
earlier paper. Here we ha'e provided an equilibrium distri- initial distribution. For moderate shears, ho%%eNer, the parti-
bution (4) that, if properly loaded, should ensure a good cle loading should be in accordance with (44), otherwise
equilibrium even for moderate shears. Since the equilibrium strong relaxation from the initial profile 2 will be inescap-
distribution as provided in (4), is an implicit function of T, able. Such strong relaxation from a nonequilibrium starting
the guiding center position, it is not in a convenient form for condition is invariably accompanied by substantial free ener-
initial loading in a particle simulation. For this purpose we gy release, which leads to a dynamic state quite different
will express (4) in terms of the real position x. From the from the quiet equilibrium essential for simulation of an in-
definition (3) for4 we obtain stability. A further improved initial distribution function

" - x = [v, - VE ( ) ]/fl. (40) with the O(e) corrections included is provided in Appendix

Expanding V, (4) around x we can show iteratively that It should be remarked that in most of the experimei..'

- x = [v, - VE (x) ] / (x ) and space observations' there exists a magnetic field aligned
[V (x)/211(x)W] [ vy - V. (x) ]2. (41) current in addition to the transverse localized electric fields.

In the case of an oblique double layer the magnetic field
Comparing (40) and (41) we find that aligned current can originate from the dc electric field com-

vy - VE() = [v,, - V.(x) ]/77(x) + 0(c'). (42) ponent in the direction of the magnetic field provided there

By definition u, = vr - (v,) and using (42) along with the are some collisions. As, for example, in the experiments of

expression (11) for (ty ), we can express u, Alport etal." the double layer has a component in the direc-

= [v, - VE(x)]/71(x) - O(e 2 ). Also expanding 77( ) tion of the external magnetic field that is larger than the

around x it can be shown that r( T) = r7(x) + O(c). Using perpendicular component, thereby providing a large mag-

these to express w, provided in (6), in terms of x we obtain netic field aligned current. Further, in some recent space
observations"' ion-cyclotron-like oscillations have been re-

w2 = V2 + [v, - V(x) ] 2/r7(x) + 0(e), (43) ported in conjunction with simultaneous observation of a
and therefore the equilibrium distribution expressed in perpendicular component of a dc electric field and a magnet-

terms of x becomes fo = nofo1 foU, where f 11  ic field aligned current for situations where the magnitude of

j/ /2ir exp( - flvy/2) and the magnetic field aligned current is below the threshold nec-
ep - 2 [- (2'] essary for the excitation of the current driven ion-cyclotron

27f 1 =Jexpl - + () 2instability."' A recent study"5 on the effect of the perpendic-
I 2 . Wx ular electric field on the current driven ion-cyclotron insta-

X (±-) I + O()]. (44) bility"' indicates that the perpendicular component of the
electric field can lower the threshold for the current driven

It should be noted that when expressed in terms of x the 71 ion-cyclotron instability. The necessary condition for the
dependence in u' changes from multiplying the y compo- current driven ion-cyclotron instability is that the parallel
nent of the velocity to dividing it. The distribution given in phase velocity co/kil of the ion-cyclotron waves resonate
(44) is the zeroth-order distribution function. The correc- with the parallel electron drift Vd, such that
tion to order e is given in Appendix C. (c - kll Vd) <0. For subcritical Vd, (c - kl Vd ) >0, and

Consider the case where a, = V'E/Lif, the peak value therefore the Landau damping cannot be inverted."' For
of the quantity V'/fl, is much smaller than unity (weak simplicity again consider the idealized field profile as given
shear). Now 7- I and if 0(c) corrections are to be ignored, in Fig. 5. The introduction of the perpendicular component
then (44) becomes a Maxwellian shifted by the magnitude of of the electric field initiates an EXB drift and consequently
the EXB velocity in theydirection. Such a distribution was there is a Doppler shift in the frequency o, i.e.,
used by Pritchett and Coroniti7 and is acceptable for weak - w, =o - k, VE, in region I over which the electric field
shears (a, ,4 1 ) especially for low temperatures. To find the is localized in the perpendicular direction. Now the neces-
correction due to a, we express l/r/(x) = I - V'r/fl along sary condition for the onset of the current driven ion-cyclo-
with the assumption that the temperature of the system will tron instability in region I becomes (c, - kil Vd) < 0, which
also be affected so that /6-#1, + 63 such that can be satisfied even though (co - kll Vd) remains positive.
60- 0 ( V /fl). Using these approximations and Thus the threshold value for the magnetic field aligned drift
6,6 = 6 V'r/2fl we can express (44) as V, necessary for the onset of the current driven ion-cyclo-

tron instability is lowered.
fo, = (,6/2r)exp( - (9/2){v + [v'- VE(x)]}) )  For the cases where there is a magnetic field aligned

X(I + (13 V'(x)/41]{[(v,, - V (x) 12-v. drift in addition to the transverse localized electric field, the
(45) term S, in (38) is not zero and can roughly be estimated

(using the local theory) to be proportional to LU, y, where
The correction term proportional to a, was also discussed in the local growth rate in the region 1, y, = - Qt/Qt., is
Ref. 7, but it was not used for the initial loading b'-cause it evaluated at c = c,. Here Qt and Q, are the real and the
was expected that the system would make the necessary ad- imaginary parts of the local dispersion relation identical to
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L- t hexpress ginci in (31 ) with w 2 and wo* set equal to zero, range (system size, temperature, density gradient, etc.) one
and QR, is the (o derivative of QR. In the ion rest frame the or the other can dominate.
field aligned drift V, provides an additional Doppler shift in It should be pointed out that while the interpretation of
the electron term so that Q, is proportional to ((o, - kil Vd ) the inhomogeneous energy density driven modes is quite
Assuming that the field aligned current is also localized convincing for the "top hat"-like profiles as evidenced in
within the region I so that QR, = U, 1w, we can write the Fig. 6, it is not so clear cut for the smooth profiles. As the
energy balance condition as profile is made smoother, additional physics is introduced

yLA U = - (w - kil V )wo ,LAl - V0 U,,A,. (46) through various resonances that are now possible since w,
can now vary smoothly over a wide range of values as op-

We have neglected the ion Landau and cyclotron dampings. posed to one constant value in region I and a different con-
First consider the case where the eletric field is not strong stant value in region II for the "top hat" profile. Geometry
enough to make o < 0 and therefore U, > 0 but ( , is less related effects can also play a role. It was also noted that as
than w. Since (j, < w it is possible to have (o, - k,, V) < 0 the smoothness of the profile was increased it was necessary
when (w - ky V E ) > 0 and hence the first term in the right- to maintain a very small amount of the density gradient in
hand side of (46) provides a growth even for subcritical Vd the transition zone in which the electric field is reducing to
while the convection leads to damping. Now if n), <0 and zero, to preserve the growth rates. This, however, makes the
consequently U, < 0, the convection will lead to growth and model more physcial since in actual experiments (e.g., see

the first term in the right-hand side will contribute to damp- Alport et a 4 ) a density gradient is present in the transition
ing. However, ifk1l V, <0 (which can be achieved by keep- zone. It appears that thedensity gradient actsas acatalyst by
ing V8 constant but changing the direction of parallel propa- maintaining the growth rate without much affecting the real
gation or vice versa) growth in region I may be expected frequency, although the exact role that the density gradient
from both the right-hand terms for (o, - k, V, ) > 0. This plays is yet to be fully appreciated. The important conclusion
canbealikelyscenario for most ofthe experiments and space however, is the fact that besides the KH instability there is
observations involving the ion-cyclotron-like oscillations for another branch that can also grow with shorter wavelengths
an equilibrium that contains a dc electric field in addition to and higher frequency in a plasma immersed in a uniform
a uniform magnetic field. More details will be provided else- magnetic field with a nonuniform transverse electric field.
where. Finally we would like to point out that in the small kp,

limit the integral equation can be exactly reduced to the sec-
ond-order differential equation (22). Thus the second-order

V. CONCLUSIONS differential equation level of description to study the nonlo-

Using a kinetic approach we have studied the generation cal wave dispersion properties employed in this paper is
more accurate for the KH modes than the ion-cyclotron-like

mechanisms for the electrostatic waves in a magnetized mode thatg for le K Fo r rate ccuracy the

warm plasma including a dc electric field perpendicular to modes that grow for large kp,. For greater accuracy the

the external magnetic field. Two distinct generation mecha- eigenvalues of the integral equation that will result by using

nisms are discussed: (i) the Kelvin-Helmholtz mechanism (17) as the perturbed density must be obtained. This will be

and (ii) the positive-negative energy wave coupling mecha- the topic of a future article.
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waves. The KH instability can dominate for small kp, if the This work is supported by the Office of Naval Research
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ma the KH instability is strongly damped even if k,, is a tiny APPENDIX A: PARTICLE ORBITS IN A UNIFORM
fraction of k.. In the theory we have shown that the terms MAGNETIC FIELD AND A TRANSVERSE NONUNIFORM
responsible for the KH wave growth are proportional to ELECTRIC FIELD
V; (x) and are of order t. Only when k,p, I l can the Bes-
sel functions be expanded for small argument and the order In this appendix we provide the derivation of the parti-

unity terms be dropped out, thereby making the order t' cle orbits to O(e2).Thexandycomponent of the equation of

terms primary. This then assures the dominance of the KH motion (I ) can be written as

instability. When kp, is increased and is of the order of or & = fiV, - V, (x), (Al)
greater thin unity the Bessel functions can no longer be ex- & - ,, (A2)
panded and consequently the order e2 terms responsible for Li - -

the KH waves cannot gain prominence. At this stage inho- where V, (x) - cE(x)/Bo. Expressing (Al) in the guid-

mogeneous energy density driven modes' dominate. Also, ing center frame , and retaining terms up to O( 2 ) we ob-

the dominance of the KH modes can be reduced even for tain

small k.p, if more oblique propagation (larger k,, ) is consid- 6, = fl(i() [v, - V.
ered. Here we have also shown that the inhomogeneous ener-
gydensity driven modescan toleratelargerk . Thusthetwo -{[v, - V.C)] 2/2fl-}V1 () + O(e)). (A3)

modes are quite distinct and, depending on the parameter We now transform (A2) and (A3) to a frame moving with a
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elocitv (i, ) in they direction (i.e., ',-u, -+ (i,,) ) so that 72[I,, cos V I( ) '/12, ) :cos2q).

-{[u + () -- ~] 2 /2W } i' )). (A4) (A16)
With tile velocities known it is a simple matter to obtain

An expression for (I,) was given in Eq. (11) in the text. the positions,
Replacing v., by u, + (i,,) in the right-hand side of ( I I), we
find that (v) - ( ) = V~ (4)(u )/272, + O(e-'). x' - x = f v. dx
Substituting this in (A4) and transforming v,, to u,, + (Lu)
in (A2), we obtain the equations of motion in the trans-
formed frames to O(e2): = (cos ' - cos 4))

b. = 1( )fluy + [V ( )/2 ] ( ,(u') - u ), (A )

1 , = - five. (A6) + (cos 24)' - cos 2D). (A17)

Note that for a linear field, V; = 0 and (A5) and (A6) 
t2

reduce to a form very similar to that of the equations of Rewriting4)' = F4ilt' + b = G7Qr + 4), where r = t-

motion for zero electric field except for the factor ij( ) in and 4) = Fyflt + 42, we obtain
(A5), which is a constant for a linear field. For V; = 0 it is X'-= - [ W,/i7(4) 0
fairly easy to solve the equations of motion and we can obtain

u, = A cos 4), where (D = /-flr + 4 and A is proportional X [cos 4r/( ) flr + P) - cos 4P]
to w,. Thus for V;r0 we assume u,=Acos4) + [Iv/12/(2)2 f]
+ B cos 24), where B = O(W). Differentiating (A6) once

and using (A5) for b, we obtain x(cos{2[4P + f1r)flT]} - cos 24)), (AI8)
U, = flb where • = VZ(/)w'/fl2 . Similarly y'-y can also be ob-

= - (p)t 2 uy - [V ( )/2]((u) - u'). (A7) tained It should be noted that when y<0, the orbits becomeS i cunstable.
Substituting uY = A cos 4 + B cos 2(P, in the left- and the For computer simulations where a distribution ofparti-
right-hand sides of (A7) we find cles is under consideration we can obtain an order ofmagni-

Ihs = - 71( )tWA cos 4P - 477(')fl2 B cos 24), (A8) tude restriction necessary for the stability of the orbit of a

rhs = - i7(')l 2 A cos 4. typical particle (characterized by a velocity v,, the thermal
velocity, and a displacementp, the gyroradius). From (A3)

-{i ( )l 2B-,[V;(T)A 2/41cos2'., , (A9) it is clear that as long as the first term in the right-hand side,

where we have neglected terms smaller than O(e 2 ). Coin- which is of order v,, is dominant, the form of (A3) is
paring the Ihs and the rhs we find that =- ( ')X + corrections, (A!9)

B= - V (t)A'/12rl( )l 2 . (AI0) whereX=( _-x)= Ivy- V,( )]/. Therefore the re-

Thus storing force is proportional to the displacement. This en-
u =Acos 4 - [V ()A 2/12y W]cos 2l), (Al) sures periodic orbits that are stable. On the other hand if the

u o -V 2/12()f2]ossecond term in the right-hand sideof (A3), which is propor-
i V (ti)A 2

, -- =5A sin 4) - sin 2). (AI2) tional to vtV;( )/fl, dominates, then (A3) is of the formj6f f 2  x = lI V= (-)/2]2 2 + corrections. (A20)

The constant A is still undetermined. The restoring force is now proportional to the square of the
After multiplying Equation (A7) by ui it can be written displacement. Hence the orbits are no longer periodic and

as therefore become unstable. Thus as long as the second term

d[t+ 7 U I'(;)(u - ,)= of (A3) remains smaller than the first term, i.e., vV'(/)/
dt 2 2 2 3 - 2 2 < 1( ')v,, we can expect stable orbits for the typical par-

ticles. This restriction leads to the condition for stable orbits
in a simulation:

Using (A6) we can eliminate ii, from (A13) and define a
constant t1w as p/R( ) < [ 2t,, ] /2,  (A21

W1 = V + 77(')u where R( ) is the local radius of curvature

- [V (')/fl] [(u'/3) - (u)u,]. (A14) ( = [IVt( )/V (-)II"'). Simplifying (A21) by replacing
the guiding center position " by the real position x and con-

Substituting u, and v, from (All) and (A12) into (A14) sidering the electric field profiles of the form
and retaining terms up to 0(e 2 ) it can be shown that VE(x) = Vof(x/L), we can define 1(x) such that

A = w /, 1. Thus,

v, =w 1 sin 4) - [ 1;(')ivw/6r/()"l]sin 2,2, 11(x) = [(2v,/V') + 2ef'(x) ]12

(AI8) _ f, (C)f (7o ) N ] A/2, (A22)
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where i = x/L and c = p/L. In order to have stable orbits dv, W, V__ w__
and avoid (or minimize) relaxation of the initial electric - - in( )2n sin 2P, (1318)

field profile used in a computer simulation, 11(x) should be

positive for all x. If this condition is violated then the orbits dv, V. (.)
will become unstable and the profile will relax until (A21) is = w1 c 3/2n2 cos2, (B9)

satisfied. dv, cos D V ()w L cos 2B)

APPENDIX B: THE JACOBIAN OF TRANSFORMATION 3w,, ( 2(.)2,fA 3 (I)

IN THE VELOCITY VARIABLES

In this appendix we evaluate the Jacobian of transfor- Using (B7)-(BIO) in (134) we obtain

mation from the coordinates (x,v,,) to the coordinates J=- V(? )w,. (BlI)
(4,u',F). This Jacobian can be written as

APPENDIX C: EQUILIBRIUM DISTRIBUTION WITH
- ,x x ORDER c CORRECTION

In this appendix we provide an equilibrium distribution

- - . (DI) function suitable for initial loading for a particle simulation
_dw d1l studying the electrostatic waves due to an equilibrium field

1'3, d,, dv, configuration containing a uniform magnetic field and a per-
S,,pendicular component of a nonuniform electric field. We

19' u,,.> dw1 ' dFD shall include the corrections that are of the order e but ignore

Using the definition of t as given in Eq. (3) in the text the order c2 corrections for the time being. Expanding y/(4)
we can evaluate the elements of the first row so that around x we obtain 17 () = 7(x) + (?'-x)r/'(x) + O(E2 ),

1 t,, 1 dv, I t, where q/'= V /fl. Using (41) for (4 -x) we can write

() 34 il dlL', n (9(1 down

v 1, (4) = ,;(x) + {[V - V,(A)/71(X) ]l (X)/1

=w, d, + 0(E2). (Cl)

dvy A, A,, Also from the expression for u, given in (A 16) we find that

-- , OdF the time average (u,) = wfl2r/(). Expressed in terms ofx,

(82) = w - [v, - (X) V;(X)/712(X)f12 1/277(x)
where we have suppressed the subscripts. Multiplying the + O(C2).

last row by I/11 and adding it to the first row we obtain Using this and (CI) in the expression for w2 as provided in

77 (4) 0 0 (6) we have

3v, dv, d9v, [v, - V(x)12

J= da , aD4 (B3) + W + [v; - VFW(x)
r/Cx)

dv, dv , dv, 2 - V,(X) V ; (X)
d,' (3w, &D ×2 2r77(x) )r72(x)f2

Thus the determinant has been considerabiy simplified and + (2). (C2)
can be expanded as

dan beedpanded4asUsing (C2) in the expression forfo, and expanding the 0(c)J ~~ =V 3v,'1---- . (B4 terms we obtain

Recall that v, = u, + (v,) and using the expressions f 2 exp[- -- (v + [, W() )
for v. and u, from (A15) and (A16), and using equation
(II) from the text for (v,) we obtain x l _ [v2 VE(x)]

v, = t', sin (1) - [ V( '/61j(]) 3 1 2 l']sin 2(,, (135) (2

=C + 4 y 1, 2 co 3 2 (P 2 r(x ) 2 r7
2(x )f 2  ( C 3)v,=~ 4ijt)lcos(+vE(4')+ l - .C3

(B6) If the 0(c) term in (C3) is set equal to zero we recover (44).

The derivatives necessary in (134) can be easily ob- For even greater accuracy it is possible to obtain the 0(c2)
corrections also.

tained, and retaining terms up to O(e2) we have

(3v, V(Cw
= sin (P - sin 2l), (B7) 'Lord Ravlcigh. Th,,orv ofSound (MacMillan. L.ondon. ISQ6) (repnnted

8tw' 3)I() _/'l' 1940), Vol. If, Chap. 2 1.
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